j ß , und die betreffenden Felder mögen die Zeilennummern i k besitzen. Aus (3.9) erhalten wir dann die zugehörigen u ik zu U ik C ikin V i/‘ C ‘kjß ' Jetzt suchen wir unter den Zeilen i k diejenigen aus, in denen außer den schon betracheten noch wenigstens ein weiteres Feld besetzt ist. (Es läßt sich beweisen, daß wenigstens eine solche Zeile existiert.). Gemäß (3.9) ermitteln wir die zugehörigen Vj usw. Das Verfahren wird so lange fortgesetzt, bis alle Ui und alle Vj bestimmt sind. Zu bemerken ist noch, daß sich die Uj und die Vj auf Grund ihrer Berech nung als Linearkombinationen der c i3 - darstellen lassen, wobei die Koeffizienten -+-1, —1 oder 0 sind. An unserem in Tab. 3 gegebenen Beispiel wollen wir unter Benutzung der nach der Nordwesteckenregel ermittelten zulässigen Basislösung das Verfahren nochmals erläutern. Wir legen dazu die Tab. 8 an, in der die Mj-Spalte und die v,-Zeile vorerst noch leer sind. Tabelle 8. Bestimmung der und der Vj Von Nach | 1 2 3 4 5 1 3 0 2 1 2 4 -2 3 1 2 3 -5 3 4 1 ® 7 8 Wir wählen = 0. Wegen u k + = 3 ist also v k = 3. Mit c 21 = 1 ergibt sich dann aus w 2 + v 1 = c 21 sofort w 2 = —2. Wegen c 22 = 2 folgt aus u 2 + v 2 =c 22 damit v 2 = 4. Wegen c 23 = 4 folgt aus u 2 + v 3 = c 23 sofort v 3 = 6. Mit c 33 = 1 erhalten wir dann aus u 3 -4- ® 3 = c 33 leicht u 3 = —5. Fortfahrend ermitteln wir so noch = 7 und v 5 = 8. Zusammenfassend können wir das Verfahren zur Bestimmung der u t und der Vj wie folgt beschreiben: In einem zur Tabelle der zulässigen Basislösung analogen Schema werden in die den positiven Komponenten der Lösung entsprechenden Felder die zugehörigen aus der Datentabelle übertragen. Anschließend wählen wir eines der w,- oder der Vj beliebig reell (etwa u k — 0) und bestimmen die übrigen so, daß die Summe Uj + Vj gerade die im Kreuzungsfeld der i-ten Zeile und der j’-ten Spalte stehende Zahl liefert. Im nichtdegenerierten Fall sind nach Wahl eines w ( oder eines Vj alle übrigen eindeutig bestimmt. Zur praktischen Durchführung der Transformation (3.8) mit den eben er mittelten und Vj bestimmen wir zuerst die sogenannten indirekten Kosten c ( j gemäß Ci j = + Vj . (3.10)