Volltext Seite (XML)
22 PTBAMIDAL SYSTEM. 73. To find the position of any pole. Tet a, b, c fie the poles of 100, 010, 001; e the distance between the poles of 101, ooi; p the pole of hkl. bc, CAj ab are quadrants. tanpAB = -icotE, k tanpBA = ie°tE, tanpcA = ^ h' EIG. 30. c cot PA = -COSPAB k ■■ ytanEcosPAC. V eotpB — -cospba = ^tanEcosPBC. h I cot PC : - cot E cos PC A = —COtECOSPCB. , « k tanpc = ^l + AhanE. t midal^ystem 1 ^ 11 ^ 1 ' e ^ emen ^ a cry 3 !- 11 ! belonging to the pyra- v ^ le ^° 1 rm ^°> the distance between two poles be h H,/ M ’i acc o/dingas their symbols differ only in the sign of h 1? +L. r ° indices h, k, or in the order of tlio indices a, and the signs of h or k. Tlien ■» tan’x & h’ F = 90° — K, M = 90° noles diffpri^ ^ let 1 be the distance between two two noles din? ° H ’gn of I, f the distance between tance between H? 8 0I i ln tlle arrangement of h, 0, E the dis tance between the poles ooi, 101. Then tan*L ■^cotE, COSF =S (sin^L) 2 poles difterWr f °,X in L r®, the diatanceH between two 1 g on ‘y 111 the signs of h, I respectively. Then tanJi = ^osi 5 °cotE, cos* = (sin^) 2 .